home *** CD-ROM | disk | FTP | other *** search
- /* randist/gamma.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
- #include <math.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_sf_gamma.h>
- #include <gsl/gsl_rng.h>
- #include <gsl/gsl_randist.h>
-
- static double gamma_large (const gsl_rng * r, const double a);
- static double gamma_frac (const gsl_rng * r, const double a);
-
- /* The Gamma distribution of order a>0 is defined by:
-
- p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx
-
- for x>0. If X and Y are independent gamma-distributed random
- variables of order a1 and a2 with the same scale parameter b, then
- X+Y has gamma distribution of order a1+a2.
-
- The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */
-
- double
- gsl_ran_gamma (const gsl_rng * r, const double a, const double b)
- {
- /* assume a > 0 */
- unsigned int na = floor (a);
-
- if (a == na)
- {
- return b * gsl_ran_gamma_int (r, na);
- }
- else if (na == 0)
- {
- return b * gamma_frac (r, a);
- }
- else
- {
- return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ;
- }
- }
-
- double
- gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a)
- {
- if (a < 12)
- {
- unsigned int i;
- double prod = 1;
-
- for (i = 0; i < a; i++)
- {
- prod *= gsl_rng_uniform_pos (r);
- }
-
- /* Note: for 12 iterations we are safe against underflow, since
- the smallest positive random number is O(2^-32). This means
- the smallest possible product is 2^(-12*32) = 10^-116 which
- is within the range of double precision. */
-
- return -log (prod);
- }
- else
- {
- return gamma_large (r, (double) a);
- }
- }
-
- static double
- gamma_large (const gsl_rng * r, const double a)
- {
- /* Works only if a > 1, and is most efficient if a is large
-
- This algorithm, reported in Knuth, is attributed to Ahrens. A
- faster one, we are told, can be found in: J. H. Ahrens and
- U. Dieter, Computing 12 (1974) 223-246. */
-
- double sqa, x, y, v;
- sqa = sqrt (2 * a - 1);
- do
- {
- do
- {
- y = tan (M_PI * gsl_rng_uniform (r));
- x = sqa * y + a - 1;
- }
- while (x <= 0);
- v = gsl_rng_uniform (r);
- }
- while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y));
-
- return x;
- }
-
- static double
- gamma_frac (const gsl_rng * r, const double a)
- {
- /* This is exercise 16 from Knuth; see page 135, and the solution is
- on page 551. */
-
- double p, q, x, u, v;
- p = M_E / (a + M_E);
- do
- {
- u = gsl_rng_uniform (r);
- v = gsl_rng_uniform_pos (r);
-
- if (u < p)
- {
- x = exp ((1 / a) * log (v));
- q = exp (-x);
- }
- else
- {
- x = 1 - log (v);
- q = exp ((a - 1) * log (x));
- }
- }
- while (gsl_rng_uniform (r) >= q);
-
- return x;
- }
-
- double
- gsl_ran_gamma_pdf (const double x, const double a, const double b)
- {
- if (x < 0)
- {
- return 0 ;
- }
- else if (x == 0)
- {
- if (a == 1)
- return 1/b ;
- else
- return 0 ;
- }
- else if (a == 1)
- {
- return exp(-x/b)/b ;
- }
- else
- {
- double p;
- double lngamma = gsl_sf_lngamma (a);
- p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b;
- return p;
- }
- }
-